Ich lese hier eine Übung in Interviews, die als binäre Suchstruktur bestätigt wird.
Wie funktioniert das genau? Was würde man bei der Validierung eines binären Suchbaums suchen? Ich habe einen einfachen Suchbaum geschrieben, aber noch nie von diesem Konzept gehört.
Eigentlich ist das der Fehler, den jeder in einem Interview macht.
Leftchild muss gegen (minLimitof node, node.value) geprüft werden
Rightchild muss gegen (node.value, MaxLimit des Knotens) geprüft werden
IsValidBST(root,-infinity,infinity);
bool IsValidBST(BinaryNode node, int MIN, int MAX)
{
if(node == null)
return true;
if(node.element > MIN
&& node.element < MAX
&& IsValidBST(node.left,MIN,node.element)
&& IsValidBST(node.right,node.element,MAX))
return true;
else
return false;
}
Eine andere Lösung (wenn Leerzeichen keine Einschränkung ist): Führen Sie eine Inorder-Durchquerung des Baums durch und speichern Sie die Knotenwerte in einem Array. Ist das Array in sortierter Reihenfolge, ist es ansonsten keine gültige BST.
"Validieren" eines binären Suchbaums bedeutet, dass Sie überprüfen, ob tatsächlich alle kleineren Elemente auf der linken und große Elemente auf der rechten Seite vorhanden sind. Im Wesentlichen wird geprüft, ob es sich bei einem binären Baum um einen binären SuchBaum handelt.
Die beste Lösung, die ich gefunden habe, ist O(n) und benötigt keinen zusätzlichen Platz. Es ist ähnlich wie inorder-Durchquerung, aber anstatt es in Array zu speichern und zu prüfen, ob es sortiert ist, können wir eine statische Variable verwenden und überprüfen, während inorder durchquert wird, ob Array sortiert ist.
static struct node *prev = NULL;
bool isBST(struct node* root)
{
// traverse the tree in inorder fashion and keep track of prev node
if (root)
{
if (!isBST(root->left))
return false;
// Allows only distinct valued nodes
if (prev != NULL && root->data <= prev->data)
return false;
prev = root;
return isBST(root->right);
}
return true;
}
Iterative Lösung mit Inorder-Traversal.
bool is_bst(Node *root) {
if (!root)
return true;
std::stack<Node*> stack;
bool started = false;
Node *node = root;
int prev_val;
while(true) {
if (node) {
stack.Push(node);
node = node->left();
continue;
}
if (stack.empty())
break;
node = stack.top();
stack.pop();
/* beginning of bst check */
if(!started) {
prev_val = node->val();
started = true;
} else {
if (prev_val > node->val())
return false;
prev_val = node->val();
}
/* end of bst check */
node = node->right();
}
return true;
}
Hier ist meine Lösung in Clojure:
(defstruct BST :val :left :right)
(defn in-order [bst]
(when-let [{:keys [val, left, right]} bst]
(lazy-seq
(concat (in-order left) (list val) (in-order right)))))
(defn is-strictly-sorted? [col]
(every?
(fn [[a b]] (< a b))
(partition 2 1 col)))
(defn is-valid-BST [bst]
(is-strictly-sorted? (in-order bst)))
Da das In-Order-Durchlaufen einer BST eine Sequenz ohne Abnahme ist, können Sie diese Eigenschaft verwenden, um zu beurteilen, ob ein binärer Baum BST ist oder nicht. Durch die Verwendung von Morris Traversal und der Aufrechterhaltung des pre
-Knotens könnten wir eine Lösung in O(n) Zeit und O(1) Space Komplexität erhalten. Hier ist mein Code
public boolean isValidBST(TreeNode root) {
TreeNode pre = null, cur = root, tmp;
while(cur != null) {
if(cur.left == null) {
if(pre != null && pre.val >= cur.val)
return false;
pre = cur;
cur = cur.right;
}
else {
tmp = cur.left;
while(tmp.right != null && tmp.right != cur)
tmp = tmp.right;
if(tmp.right == null) { // left child has not been visited
tmp.right = cur;
cur = cur.left;
}
else { // left child has been visited already
tmp.right = null;
if(pre != null && pre.val >= cur.val)
return false;
pre = cur;
cur = cur.right;
}
}
}
return true;
}
Hier ist meine Antwort in Python, es hat alle Eckpunkte angesprochen und in Hackerrank-Website getestet
""" Node is defined as
class node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
"""
def checkBST(root):
return checkLeftSubTree(root, root.left) and checkRightSubTree(root, root.right)
def checkLeftSubTree(root, subTree):
if not subTree:
return True
else:
return root.data > subTree.data \
and checkLeftSubTree(root, subTree.left) \
and checkLeftSubTree(root, subTree.right) \
and checkLeftSubTree(subTree, subTree.left) \
and checkRightSubTree(subTree, subTree.right)
def checkRightSubTree(root, subTree):
if not subTree:
return True
else:
return root.data < subTree.data \
and checkRightSubTree(root, subTree.left) \
and checkRightSubTree(root, subTree.right) \
and checkRightSubTree(subTree, subTree.right) \
and checkLeftSubTree(subTree, subTree.left)
bool ValidateBST(Node *pCurrentNode, int nMin = INT_MIN, int nMax = INT_MAX)
{
return
(
pCurrentNode == NULL
)
||
(
(
!pCurrentNode->pLeftNode ||
(
pCurrentNode->pLeftNode->value < pCurrentNode->value &&
pCurrentNode->pLeftNode->value < nMax &&
ValidateBST(pCurrentNode->pLeftNode, nMin, pCurrentNode->value)
)
)
&&
(
!pCurrentNode->pRightNode ||
(
pCurrentNode->pRightNode->value > pCurrentNode->value &&
pCurrentNode->pRightNode->value > nMin &&
ValidateBST(pCurrentNode->pRightNode, pCurrentNode->value, nMax)
)
)
);
}
Ich habe diese Frage kürzlich in einem Telefoninterview bekommen und habe mich mehr damit abgemüht, als ich hätte haben sollen. Ich versuchte, Minimums und Maximums in Kinderknoten zu verfolgen, und ich konnte mein Gehirn einfach nicht um die verschiedenen Fälle unter dem Druck eines Interviews wickeln.
Nachdem ich letzte Nacht beim Einschlafen darüber nachgedacht hatte, stellte ich fest, dass es so einfach ist, den letzten Knoten zu verfolgen, den Sie während einer Inorder-Durchquerung besucht haben. In Java:
public <T extends Comparable<T>> boolean isBst(TreeNode<T> root) {
return isBst(root, null);
}
private <T extends Comparable<T>> boolean isBst(TreeNode<T> node, TreeNode<T> prev) {
if (node == null)
return true;
if (isBst(node.left, prev) && (prev == null || prev.compareTo(node) < 0 ))
return isBst(node.right, node);
return false;
}
"Es ist besser, zuerst eine Invariante zu definieren. Hier ist die Invariante - alle zwei aufeinanderfolgenden Elemente der BST im In-Order-Durchlauf müssen in strikt aufsteigender Reihenfolge ihres Auftretens sein (können nicht gleich sein, immer in der Reihenfolge.) traversal). Die Lösung kann also nur ein einfacher Durchlauf in der Reihenfolge sein, wobei der zuletzt besuchte Knoten erinnert und der aktuelle Knoten mit dem zuletzt besuchten Knoten mit '<' (oder '>') verglichen wird. "
In Java und Zulassen von Knoten mit gleichem Wert in einem der Unterbäume:
public boolean isValid(Node node) {
return isValid(node, Integer.MIN_VALUE, Integer.MAX_VALUE);
}
private boolean isValid(Node node, int minLimit, int maxLimit) {
if (node == null)
return true;
return minLimit <= node.value && node.value <= maxLimit
&& isValid(node.left, minLimit, node.value)
&& isValid(node.right, node.value, maxLimit);
}
bool BinarySearchTree::validate() {
int minVal = -1;
int maxVal = -1;
return ValidateImpl(root, minVal, maxVal);
}
bool BinarySearchTree::ValidateImpl(Node *currRoot, int &minVal, int &maxVal)
{
int leftMin = -1;
int leftMax = -1;
int rightMin = -1;
int rightMax = -1;
if (currRoot == NULL) return true;
if (currRoot->left) {
if (currRoot->left->value < currRoot->value) {
if (!ValidateImpl(currRoot->left, leftMin, leftMax)) return false;
if (leftMax != currRoot->left->value && currRoot->value < leftMax) return false;
}
else
return false;
} else {
leftMin = leftMax = currRoot->value;
}
if (currRoot->right) {
if (currRoot->right->value > currRoot->value) {
if(!ValidateImpl(currRoot->right, rightMin, rightMax)) return false;
if (rightMin != currRoot->right->value && currRoot->value > rightMin) return false;
}
else return false;
} else {
rightMin = rightMax = currRoot->value;
}
minVal = leftMin < rightMin ? leftMin : rightMin;
maxVal = leftMax > rightMax ? leftMax : rightMax;
return true;
}
Einzeiler
bool is_bst(Node *root, int from, int to) {
return (root == NULL) ? true :
root->val >= from && root->val <= to &&
is_bst(root->left, from, root->val) &&
is_bst(root->right, root->val, to);
}
Ziemlich lange Schlange.
Rekursion ist einfach, aber der iterative Ansatz ist besser. Es gibt eine iterative Version, die jedoch viel zu komplex ist. Hier ist die beste -Lösung in c++
, die Sie überall finden können:
Dieser Algorithmus läuft in O(N)
Zeit und benötigt O(lgN)
Platz.
struct TreeNode
{
int value;
TreeNode* left;
TreeNode* right;
};
bool isBST(TreeNode* root) {
vector<TreeNode*> stack;
TreeNode* prev = nullptr;
while (root || stack.size()) {
if (root) {
stack.Push_back(root);
root = root->left;
} else {
if (prev && stack.back()->value <= prev->value)
return false;
prev = stack.back();
root = prev->right;
stack.pop_back();
}
}
return true;
}
Es folgt die Java-Implementierung der BST-Validierung, bei der wir den Baum in der Reihenfolge DFS durchlaufen und False zurückgeben, wenn wir eine Zahl erhalten, die größer als die letzte Zahl ist.
static class BSTValidator {
private boolean lastNumberInitialized = false;
private int lastNumber = -1;
boolean isValidBST(TreeNode node) {
if (node.left != null && !isValidBST(node.left)) return false;
// In-order visiting should never see number less than previous
// in valid BST.
if (lastNumberInitialized && (lastNumber > node.getData())) return false;
if (!lastNumberInitialized) lastNumberInitialized = true;
lastNumber = node.getData();
if (node.right != null && !isValidBST(node.right)) return false;
return true;
}
}
Rekursive Lösung:
isBinary(root)
{
if root == null
return true
else if( root.left == NULL and root.right == NULL)
return true
else if(root.left == NULL)
if(root.right.element > root.element)
rerturn isBInary(root.right)
else if (root.left.element < root.element)
return isBinary(root.left)
else
return isBInary(root.left) and isBinary(root.right)
}
Inspiriert von http://www.jiuzhang.com/solutions/validate-binary-search-tree/
Es gibt zwei allgemeine Lösungen: Durchqueren und Teilen & & Erobern.
public class validateBinarySearchTree {
public boolean isValidBST(TreeNode root) {
return isBSTTraversal(root) && isBSTDivideAndConquer(root);
}
// Solution 1: Traversal
// The inorder sequence of a BST is a sorted ascending list
private int lastValue = 0; // the init value of it doesn't matter.
private boolean firstNode = true;
public boolean isBSTTraversal(TreeNode root) {
if (root == null) {
return true;
}
if (!isValidBST(root.left)) {
return false;
}
// firstNode is needed because of if firstNode is Integer.MIN_VALUE,
// even if we set lastValue to Integer.MIN_VALUE, it will still return false
if (!firstNode && lastValue >= root.val) {
return false;
}
firstNode = false;
lastValue = root.val;
if (!isValidBST(root.right)) {
return false;
}
return true;
}
// Solution 2: divide && conquer
private class Result {
int min;
int max;
boolean isBST;
Result(int min, int max, boolean isBST) {
this.min = min;
this.max = max;
this.isBST = isBST;
}
}
public boolean isBSTDivideAndConquer(TreeNode root) {
return isBSTHelper(root).isBST;
}
public Result isBSTHelper(TreeNode root) {
// For leaf node's left or right
if (root == null) {
// we set min to Integer.MAX_VALUE and max to Integer.MIN_VALUE
// because of in the previous level which is the leaf level,
// we want to set the min or max to that leaf node's val (in the last return line)
return new Result(Integer.MAX_VALUE, Integer.MIN_VALUE, true);
}
Result left = isBSTHelper(root.left);
Result right = isBSTHelper(root.right);
if (!left.isBST || !right.isBST) {
return new Result(0,0, false);
}
// For non-leaf node
if (root.left != null && left.max >= root.val
&& root.right != null && right.min <= root.val) {
return new Result(0, 0, false);
}
return new Result(Math.min(left.min, root.val),
Math.max(right.max, root.val), true);
}
}
bool isBST(struct node* root)
{
static struct node *prev = NULL;
// traverse the tree in inorder fashion and keep track of prev node
if (root)
{
if (!isBST(root->left))
return false;
// Allows only distinct valued nodes
if (prev != NULL && root->data <= prev->data)
return false;
prev = root;
return isBST(root->right);
}
return true;
}
Funktioniert gut :)
Iterative Lösung.
private static boolean checkBst(bst node) {
Stack<bst> s = new Stack<bst>();
bst temp;
while(node!=null){
s.Push(node);
node=node.left;
}
while (!s.isEmpty()){
node = s.pop();
System.out.println(node.val);
temp = node;
if(node.right!=null){
node = node.right;
while(node!=null)
{
//Checking if the current value is lesser than the previous value and ancestor.
if(node.val < temp.val)
return false;
if(!s.isEmpty())
if(node.val>s.peek().val)
return false;
s.Push(node);
if(node!=null)
node=node.left;
}
}
}
return true;
}
Python-Implementierungsbeispiel. In diesem Beispiel werden Typanmerkungen verwendet. Da sich die Node-Klasse jedoch selbst verwendet, müssen wir als erste Zeile des Moduls Folgendes angeben:
from __future__ import annotations
Andernfalls erhalten Sie einen name 'Node' is not defined
-Fehler. In diesem Beispiel wird auch die Datenklasse als Beispiel verwendet. Um zu prüfen, ob es sich um eine BST handelt, wird Rekursion zum Überprüfen der Werte für den linken und rechten Knoten verwendet.
"""Checks if Binary Search Tree (BST) is balanced"""
from __future__ import annotations
import sys
from dataclasses import dataclass
MAX_KEY = sys.maxsize
MIN_KEY = -sys.maxsize - 1
@dataclass
class Node:
value: int
left: Node
right: Node
@property
def is_leaf(self) -> bool:
"""Check if node is a leaf"""
return not self.left and not self.right
def is_bst(node: Node, min_value: int, max_value: int) -> bool:
if node.value < min_value or max_value < node.value:
return False
Elif node.is_leaf:
return True
return is_bst(node.left, min_value, node.value) and is_bst(
node.right, node.value, max_value
)
if __== "__main__":
node5 = Node(5, None, None)
node25 = Node(25, None, None)
node40 = Node(40, None, None)
node10 = Node(10, None, None)
# balanced tree
node30 = Node(30, node25, node40)
root = Node(20, node10, node30)
print(is_bst(root, MIN_KEY, MAX_KEY))
# unbalanced tree
node30 = Node(30, node5, node40)
root = Node(20, node10, node30)
print(is_bst(root, MIN_KEY, MAX_KEY))
iterative
prüft iterativ, ob der angegebene Baum ein binärer Suchbaum ist. recurse
prüft rekursiv, ob der angegebene Baum ein binärer Suchbaum ist oder nicht. iterative
Funktion verwende ich bfs zur Überprüfung von BST.recurse
Funktion verwende ich dfs zur Überprüfung von BST.O(n)
iterative
hat einen Vorteil gegenüber der Lösung recurse
und iterative
die Lösung bricht früh ab.recurse
kann durch den globalen Flag-Wert auf frühes Anhalten optimiert werden. Und vergleichen Sie weiterhin den aktuellen Wert des Knotens innerhalb des Bereichs. Wenn sich der Wert eines Knotens nicht im Bereich befindet, geben Sie False zurück
class Solution:
def isValidBST(self, root):
"""
:type root: TreeNode
:rtype: bool
"""
return self.iterative(root)
# return self.recurse(root, float("inf"), float("-inf"))
def iterative(self, root):
if not root:
return True
level = [[root, -float("inf"), float("inf")]]
while level:
next_level = []
for element in level:
node, min_val, max_val = element
if min_val<node.val<max_val:
if node.left:
next_level.append([node.left, min_val, node.val])
if node.right:
next_level.append([node.right, node.val, max_val])
else:
return False
level = next_level
return True
def recurse(self, root, maxi, mini):
if root is None:
return True
if root.val < mini or root.val > maxi:
return False
return self.recurse(root.left, root.val-1, mini) and self.recurse(root.right, maxi, root.val+1)
Hier ist eine Lösung in Java aus der Algorithmusklasse von sedgewick ..__ Überprüfen Sie die vollständige BST-Implementierung hier
Ich habe einige erklärende Kommentare hinzugefügt
private boolean isBST() {
return isBST(root, null, null);
}
private boolean isBST(Node x, Key min, Key max) {
if (x == null) return true;
// when checking right subtree min is key of x's parent
if (min != null && x.key.compareTo(min) <= 0) return false;
// when checking left subtree, max is key of x's parent
if (max != null && x.key.compareTo(max) >= 0) return false;
// check left subtree and right subtree
return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
}
Ich habe eine Lösung geschrieben, um inorder Traversal BST zu verwenden, und zu überprüfen, ob die Knoten die Reihenfolge für den Raum O(1)
und die Zeit O(n)
erhöhen. TreeNode predecessor
ist der vorige Knoten. Ich bin nicht sicher, ob die Lösung richtig ist oder nicht. Weil das inorder Traversal keinen ganzen Baum definieren kann.
public boolean isValidBST(TreeNode root, TreeNode predecessor) {
boolean left = true, right = true;
if (root.left != null) {
left = isValidBST(root.left, predecessor);
}
if (!left)
return false;
if (predecessor.val > root.val)
return false;
predecessor.val = root.val;
if (root.right != null) {
right = isValidBST(root.right, predecessor);
}
if (!right)
return false;
return true;
}
// using inorder traverse based Impl
bool BinarySearchTree::validate() {
int val = -1;
return ValidateImpl(root, val);
}
// inorder traverse based Impl
bool BinarySearchTree::ValidateImpl(Node *currRoot, int &val) {
if (currRoot == NULL) return true;
if (currRoot->left) {
if (currRoot->left->value > currRoot->value) return false;
if(!ValidateImpl(currRoot->left, val)) return false;
}
if (val > currRoot->value) return false;
val = currRoot->value;
if (currRoot->right) {
if (currRoot->right->value < currRoot->value) return false;
if(!ValidateImpl(currRoot->right, val)) return false;
}
return true;
}
Dies funktioniert bei Duplikaten.
// time O(n), space O(logn)
// pseudocode
is-bst(node, min = int.min, max = int.max):
if node == null:
return true
if node.value <= min || max < node.value:
return false
return is-bst(node.left, min, node.value)
&& is-bst(node.right, node.value, max)
Dies funktioniert auch für int.min
- und int.max
-Werte mit Nullable
-Typen.
// time O(n), space O(logn)
// pseudocode
is-bst(node, min = null, max = null):
if node == null:
return true
if min != null && node.value <= min
return false
if max != null && max < node.value:
return false
return is-bst(node.left, min, node.value)
&& is-bst(node.right, node.value, max)
Um herauszufinden, ob BT für jeden Datentyp BST ist, müssen Sie den folgenden Ansatz verwenden: 1. rekursive Funktion bis zum Ende des Blattknotens mit Inorder-Durchlauf aufrufen 2. Bauen Sie Ihre minimalen und maximalen Werte selbst auf.
Das Baumelement muss kleiner oder größer als der definierte Operator sein.
#define MIN (FirstVal, SecondVal) ((FirstVal) < (SecondVal)) ? (FirstVal):(SecondVal)
#define MAX (FirstVal, SecondVal) ((FirstVal) > (SecondVal)) ? (FirstVal):(SecondVal)
template <class T>
bool IsValidBST (treeNode &root)
{
T min, max;
return IsValidBST (root, &min, &max);
}
template <class T>
bool IsValidBST (treeNode *root, T *MIN , T *MAX)
{
T leftMin, leftMax, rightMin, rightMax;
bool isValidBST;
if (root->leftNode == NULL && root->rightNode == NULL)
{
*MIN = root->element;
*MAX = root->element;
return true;
}
isValidBST = IsValidBST (root->leftNode, &leftMin, &leftMax);
if (isValidBST)
isValidBST = IsValidBST (root->rightNode, &rightMin, &rightMax);
if (isValidBST)
{
*MIN = MIN (leftMIN, rightMIN);
*Max = MAX (rightMax, leftMax);
}
return isValidBST;
}