Ich kann keine Python-Bibliotheken finden, die eine mehrfache Regression durchführen. Die einzigen Dinge, die ich finde, machen nur eine einfache Regression. Ich muss meine abhängige Variable (y) auf mehrere unabhängige Variablen (x1, x2, x3 usw.) zurückführen.
Zum Beispiel mit diesen Daten:
print 'y x1 x2 x3 x4 x5 x6 x7'
for t in texts:
print "{:>7.1f}{:>10.2f}{:>9.2f}{:>9.2f}{:>10.2f}{:>7.2f}{:>7.2f}{:>9.2f}" /
.format(t.y,t.x1,t.x2,t.x3,t.x4,t.x5,t.x6,t.x7)
(Ausgabe für oben :)
y x1 x2 x3 x4 x5 x6 x7
-6.0 -4.95 -5.87 -0.76 14.73 4.02 0.20 0.45
-5.0 -4.55 -4.52 -0.71 13.74 4.47 0.16 0.50
-10.0 -10.96 -11.64 -0.98 15.49 4.18 0.19 0.53
-5.0 -1.08 -3.36 0.75 24.72 4.96 0.16 0.60
-8.0 -6.52 -7.45 -0.86 16.59 4.29 0.10 0.48
-3.0 -0.81 -2.36 -0.50 22.44 4.81 0.15 0.53
-6.0 -7.01 -7.33 -0.33 13.93 4.32 0.21 0.50
-8.0 -4.46 -7.65 -0.94 11.40 4.43 0.16 0.49
-8.0 -11.54 -10.03 -1.03 18.18 4.28 0.21 0.55
Wie würde ich diese in Python regressieren, um die lineare Regressionsformel zu erhalten:
Y = a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + + a7x7 + c
sklearn.linear_model.LinearRegression
macht es:
from sklearn import linear_model
clf = linear_model.LinearRegression()
clf.fit([[getattr(t, 'x%d' % i) for i in range(1, 8)] for t in texts],
[t.y for t in texts])
Dann hat clf.coef_
die Regressionskoeffizienten.
sklearn.linear_model
hat auch ähnliche Schnittstellen, um verschiedene Arten von Regularisierungen der Regression durchzuführen.
Hier ist eine kleine Arbeit, die ich erstellt habe. Ich habe es mit R überprüft und es funktioniert korrekt.
import numpy as np
import statsmodels.api as sm
y = [1,2,3,4,3,4,5,4,5,5,4,5,4,5,4,5,6,5,4,5,4,3,4]
x = [
[4,2,3,4,5,4,5,6,7,4,8,9,8,8,6,6,5,5,5,5,5,5,5],
[4,1,2,3,4,5,6,7,5,8,7,8,7,8,7,8,7,7,7,7,7,6,5],
[4,1,2,5,6,7,8,9,7,8,7,8,7,7,7,7,7,7,6,6,4,4,4]
]
def reg_m(y, x):
ones = np.ones(len(x[0]))
X = sm.add_constant(np.column_stack((x[0], ones)))
for ele in x[1:]:
X = sm.add_constant(np.column_stack((ele, X)))
results = sm.OLS(y, X).fit()
return results
Ergebnis:
print reg_m(y, x).summary()
Ausgabe:
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.535
Model: OLS Adj. R-squared: 0.461
Method: Least Squares F-statistic: 7.281
Date: Tue, 19 Feb 2013 Prob (F-statistic): 0.00191
Time: 21:51:28 Log-Likelihood: -26.025
No. Observations: 23 AIC: 60.05
Df Residuals: 19 BIC: 64.59
Df Model: 3
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1 0.2424 0.139 1.739 0.098 -0.049 0.534
x2 0.2360 0.149 1.587 0.129 -0.075 0.547
x3 -0.0618 0.145 -0.427 0.674 -0.365 0.241
const 1.5704 0.633 2.481 0.023 0.245 2.895
==============================================================================
Omnibus: 6.904 Durbin-Watson: 1.905
Prob(Omnibus): 0.032 Jarque-Bera (JB): 4.708
Skew: -0.849 Prob(JB): 0.0950
Kurtosis: 4.426 Cond. No. 38.6
pandas
bietet eine bequeme Möglichkeit, OLS wie in dieser Antwort angegeben auszuführen:
Zur Verdeutlichung ist das von Ihnen gegebene Beispiel multiple lineare Regression, nicht multivariate lineare Regression. Unterschied :
Der einfachste Fall einer einzelnen skalaren Prädiktorvariablen x und einer einzelnen skalaren Antwortvariablen y wird als einfache lineare Regression bezeichnet. Die Erweiterung auf mehrere und/oder vektorierte Prädiktorvariablen (mit einem X gekennzeichnet) wird als multiple lineare Regression bezeichnet, die auch als multivariable lineare Regression bezeichnet wird. Nahezu alle realen Regressionsmodelle beinhalten mehrere Prädiktoren. Grundlegende Beschreibungen der linearen Regression werden oft in Form eines multiplen Regressionsmodells formuliert. Beachten Sie jedoch, dass die Antwortvariable y in diesen Fällen immer noch ein Skalar ist. Ein weiterer Begriff der multivariaten linearen Regression bezieht sich auf Fälle, in denen y ein Vektor ist, d. H. Derselbe wie die allgemeine lineare Regression. Der Unterschied zwischen der multivariaten linearen Regression und der multivariablen linearen Regression sollte hervorgehoben werden, da dies zu viel Verwirrung und Missverständnissen in der Literatur führt.
Zusamenfassend:
(Eine andere Quelle .)
Sie können numpy.linalg.lstsq verwenden:
import numpy as np
y = np.array([-6,-5,-10,-5,-8,-3,-6,-8,-8])
X = np.array([[-4.95,-4.55,-10.96,-1.08,-6.52,-0.81,-7.01,-4.46,-11.54],[-5.87,-4.52,-11.64,-3.36,-7.45,-2.36,-7.33,-7.65,-10.03],[-0.76,-0.71,-0.98,0.75,-0.86,-0.50,-0.33,-0.94,-1.03],[14.73,13.74,15.49,24.72,16.59,22.44,13.93,11.40,18.18],[4.02,4.47,4.18,4.96,4.29,4.81,4.32,4.43,4.28],[0.20,0.16,0.19,0.16,0.10,0.15,0.21,0.16,0.21],[0.45,0.50,0.53,0.60,0.48,0.53,0.50,0.49,0.55]])
X = X.T # transpose so input vectors are along the rows
X = np.c_[X, np.ones(X.shape[0])] # add bias term
beta_hat = np.linalg.lstsq(X,y)[0]
print beta_hat
Ergebnis:
[ -0.49104607 0.83271938 0.0860167 0.1326091 6.85681762 22.98163883 -41.08437805 -19.08085066]
Sie können die geschätzte Ausgabe sehen mit:
print np.dot(X,beta_hat)
Ergebnis:
[ -5.97751163, -5.06465759, -10.16873217, -4.96959788, -7.96356915, -3.06176313, -6.01818435, -7.90878145, -7.86720264]
Verwenden Sie scipy.optimize.curve_fit
. Und das nicht nur für die lineare Passform.
from scipy.optimize import curve_fit
import scipy
def fn(x, a, b, c):
return a + b*x[0] + c*x[1]
# y(x0,x1) data:
# x0=0 1 2
# ___________
# x1=0 |0 1 2
# x1=1 |1 2 3
# x1=2 |2 3 4
x = scipy.array([[0,1,2,0,1,2,0,1,2,],[0,0,0,1,1,1,2,2,2]])
y = scipy.array([0,1,2,1,2,3,2,3,4])
popt, pcov = curve_fit(fn, x, y)
print popt
Nachdem Sie Ihre Daten in einen Pandas-Datenrahmen (df
) konvertiert haben,
import statsmodels.formula.api as smf
lm = smf.ols(formula='y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7', data=df).fit()
print(lm.params)
Der Intercept-Begriff ist standardmäßig enthalten.
Siehe dieses Notizbuch für weitere Beispiele.
Ich denke, dass dies der einfachste Weg ist, diese Arbeit zu beenden:
from random import random
from pandas import DataFrame
from statsmodels.api import OLS
lr = lambda : [random() for i in range(100)]
x = DataFrame({'x1': lr(), 'x2':lr(), 'x3':lr()})
x['b'] = 1
y = x.x1 + x.x2 * 2 + x.x3 * 3 + 4
print x.head()
x1 x2 x3 b
0 0.433681 0.946723 0.103422 1
1 0.400423 0.527179 0.131674 1
2 0.992441 0.900678 0.360140 1
3 0.413757 0.099319 0.825181 1
4 0.796491 0.862593 0.193554 1
print y.head()
0 6.637392
1 5.849802
2 7.874218
3 7.087938
4 7.102337
dtype: float64
model = OLS(y, x)
result = model.fit()
print result.summary()
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 1.000
Model: OLS Adj. R-squared: 1.000
Method: Least Squares F-statistic: 5.859e+30
Date: Wed, 09 Dec 2015 Prob (F-statistic): 0.00
Time: 15:17:32 Log-Likelihood: 3224.9
No. Observations: 100 AIC: -6442.
Df Residuals: 96 BIC: -6431.
Df Model: 3
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1 1.0000 8.98e-16 1.11e+15 0.000 1.000 1.000
x2 2.0000 8.28e-16 2.41e+15 0.000 2.000 2.000
x3 3.0000 8.34e-16 3.6e+15 0.000 3.000 3.000
b 4.0000 8.51e-16 4.7e+15 0.000 4.000 4.000
==============================================================================
Omnibus: 7.675 Durbin-Watson: 1.614
Prob(Omnibus): 0.022 Jarque-Bera (JB): 3.118
Skew: 0.045 Prob(JB): 0.210
Kurtosis: 2.140 Cond. No. 6.89
==============================================================================
Mehrere lineare Regressionen können mit der sklearn-Bibliothek wie oben beschrieben gehandhabt werden. Ich verwende die Anaconda-Installation von Python 3.6.
Erstellen Sie Ihr Modell wie folgt:
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X, y)
# display coefficients
print(regressor.coef_)
Sie können numpy.linalg.lstsq verwenden.
Sie können die Funktion unten verwenden und einen DataFrame übergeben:
def linear(x, y=None, show=True):
"""
@param x: pd.DataFrame
@param y: pd.DataFrame or pd.Series or None
if None, then use last column of x as y
@param show: if show regression summary
"""
import statsmodels.api as sm
xy = sm.add_constant(x if y is None else pd.concat([x, y], axis=1))
res = sm.OLS(xy.ix[:, -1], xy.ix[:, :-1], missing='drop').fit()
if show: print res.summary()
return res
Hier ist eine alternative und grundlegende Methode:
from patsy import dmatrices
import statsmodels.api as sm
y,x = dmatrices("y_data ~ x_1 + x_2 ", data = my_data)
### y_data is the name of the dependent variable in your data ###
model_fit = sm.OLS(y,x)
results = model_fit.fit()
print(results.summary())
Anstelle von sm.OLS
können Sie auch sm.Logit
oder sm.Probit
und usw. verwenden.