Ich habe ein numpy-Array, das hauptsächlich mit reellen Zahlen gefüllt ist, aber es gibt auch ein paar nan
-Werte.
Wie kann ich die nan
s durch die Durchschnittswerte der Spalten ersetzen, wo sie sind?
Keine Schleifen erforderlich:
print(a)
[[ 0.93230948 nan 0.47773439 0.76998063]
[ 0.94460779 0.87882456 0.79615838 0.56282885]
[ 0.94272934 0.48615268 0.06196785 nan]
[ 0.64940216 0.74414127 nan nan]]
#Obtain mean of columns as you need, nanmean is just convenient.
col_mean = np.nanmean(a, axis=0)
print(col_mean)
[ 0.86726219 0.7030395 0.44528687 0.66640474]
#Find indicies that you need to replace
inds = np.where(np.isnan(a))
#Place column means in the indices. Align the arrays using take
a[inds] = np.take(col_mean, inds[1])
print(a)
[[ 0.93230948 0.7030395 0.47773439 0.76998063]
[ 0.94460779 0.87882456 0.79615838 0.56282885]
[ 0.94272934 0.48615268 0.06196785 0.66640474]
[ 0.64940216 0.74414127 0.44528687 0.66640474]]
Die Standardmethode, bei der nur numpy verwendet wird, ist die Verwendung des Moduls masked array .
Scipy ist ein recht umfangreiches Paket, das auf externen Bibliotheken beruht. Es lohnt sich also, eine reine Numpy-Methode zu verwenden. Dies geht aus der Antwort von @ DonaldHobson hervor.
Edit:np.nanmean
ist jetzt eine numpy-Funktion. Es behandelt jedoch keine All-Nan-Säulen ...
Angenommen, Sie haben ein Array a
:
>>> a
array([[ 0., nan, 10., nan],
[ 1., 6., nan, nan],
[ 2., 7., 12., nan],
[ 3., 8., nan, nan],
[ nan, 9., 14., nan]])
>>> import numpy.ma as ma
>>> np.where(np.isnan(a), ma.array(a, mask=np.isnan(a)).mean(axis=0), a)
array([[ 0. , 7.5, 10. , 0. ],
[ 1. , 6. , 12. , 0. ],
[ 2. , 7. , 12. , 0. ],
[ 3. , 8. , 12. , 0. ],
[ 1.5, 9. , 14. , 0. ]])
Beachten Sie, dass der Mittelwert des maskierten Arrays nicht dieselbe Form wie a
haben muss, da wir die impliziten broadcasting over-Zeilen nutzen.
Beachten Sie auch, wie die All-Nan-Säule gut gehandhabt wird. Der Mittelwert ist Null, da Sie den Mittelwert von Nullelementen verwenden. Die Methode, die nanmean
verwendet, verarbeitet keine All-Nan-Spalten:
>>> col_mean = np.nanmean(a, axis=0)
/home/praveen/.virtualenvs/numpy3-mkl/lib/python3.4/site-packages/numpy/lib/nanfunctions.py:675: RuntimeWarning: Mean of empty slice
warnings.warn("Mean of empty slice", RuntimeWarning)
>>> inds = np.where(np.isnan(a))
>>> a[inds] = np.take(col_mean, inds[1])
>>> a
array([[ 0. , 7.5, 10. , nan],
[ 1. , 6. , 12. , nan],
[ 2. , 7. , 12. , nan],
[ 3. , 8. , 12. , nan],
[ 1.5, 9. , 14. , nan]])
Erklärung
Das Konvertieren von a
in ein maskiertes Array liefert Ihnen
>>> ma.array(a, mask=np.isnan(a))
masked_array(data =
[[0.0 -- 10.0 --]
[1.0 6.0 -- --]
[2.0 7.0 12.0 --]
[3.0 8.0 -- --]
[-- 9.0 14.0 --]],
mask =
[[False True False True]
[False False True True]
[False False False True]
[False False True True]
[ True False False True]],
fill_value = 1e+20)
Wenn Sie den Mittelwert über die Spalten nehmen, erhalten Sie die Antwort richtig und normalisieren nur die nicht maskierten Werte:
>>> ma.array(a, mask=np.isnan(a)).mean(axis=0)
masked_array(data = [1.5 7.5 12.0 --],
mask = [False False False True],
fill_value = 1e+20)
Beachten Sie außerdem, wie die Maske die Spalte mit all-nan!
Schließlich erledigt np.where
die Ersetzung.
Reihenweise gemeint
Um nan
-Werte durch ein zeilenweises Mittel anstelle eines spaltenweisen Mittelwerts zu ersetzen, ist eine kleine Änderung erforderlich, damit das Broadcasting gut in Kraft treten kann:
>>> a
array([[ 0., 1., 2., 3., nan],
[ nan, 6., 7., 8., 9.],
[ 10., nan, 12., nan, 14.],
[ nan, nan, nan, nan, nan]])
>>> np.where(np.isnan(a), ma.array(a, mask=np.isnan(a)).mean(axis=1), a)
ValueError: operands could not be broadcast together with shapes (4,5) (4,) (4,5)
>>> np.where(np.isnan(a), ma.array(a, mask=np.isnan(a)).mean(axis=1)[:, np.newaxis], a)
array([[ 0. , 1. , 2. , 3. , 1.5],
[ 7.5, 6. , 7. , 8. , 9. ],
[ 10. , 12. , 12. , 12. , 14. ],
[ 0. , 0. , 0. , 0. , 0. ]])
Wenn partial Ihre Originaldaten sind und replace ein Array derselben Form ist, das gemittelte Werte enthält, verwendet dieser Code den Wert von partial, falls vorhanden.
Complete= np.where(np.isnan(partial),replace,partial)
Alternative : Ersetzen von NaNs durch Interpolation von Spalten.
def interpolate_nans(X):
"""Overwrite NaNs with column value interpolations."""
for j in range(X.shape[1]):
mask_j = np.isnan(X[:,j])
X[mask_j,j] = np.interp(np.flatnonzero(mask_j), np.flatnonzero(~mask_j), X[~mask_j,j])
return X
Anwendungsbeispiel:
X_incomplete = np.array([[10, 20, 30 ],
[np.nan, 30, np.nan],
[np.nan, np.nan, 50 ],
[40, 50, np.nan ]])
X_complete = interpolate_nans(X_incomplete)
print X_complete
[[10, 20, 30 ],
[20, 30, 40 ],
[30, 40, 50 ],
[40, 50, 50 ]]
Ich benutze dieses Codebit insbesondere für Zeitreihendaten, wobei Spalten Attribute und Zeilen zeitlich geordnete Abtastwerte sind.
Dies ist nicht sehr sauber, aber ich kann mir keine andere Möglichkeit vorstellen, als zu iterieren
#example
a = np.arange(16, dtype = float).reshape(4,4)
a[2,2] = np.nan
a[3,3] = np.nan
indices = np.where(np.isnan(a)) #returns an array of rows and column indices
for row, col in Zip(*indices):
a[row,col] = np.mean(a[~np.isnan(a[:,col]), col])
Um Donalds Antwort zu erweitern, gebe ich ein minimales Beispiel. Nehmen wir an, a
ist ein ndarray und wir möchten seine Nullwerte durch den Mittelwert der Spalte ersetzen.
In [231]: a
Out[231]:
array([[0, 3, 6],
[2, 0, 0]])
In [232]: col_mean = np.nanmean(a, axis=0)
Out[232]: array([ 1. , 1.5, 3. ])
In [228]: np.where(np.equal(a, 0), col_mean, a)
Out[228]:
array([[ 1. , 3. , 6. ],
[ 2. , 1.5, 3. ]])
Verwenden einfacher Funktionen mit Schleifen:
a=[[0.93230948, np.nan, 0.47773439, 0.76998063],
[0.94460779, 0.87882456, 0.79615838, 0.56282885],
[0.94272934, 0.48615268, 0.06196785, np.nan],
[0.64940216, 0.74414127, np.nan, np.nan],
[0.64940216, 0.74414127, np.nan, np.nan]]
print("------- original array -----")
for aa in a:
print(aa)
# GET COLUMN MEANS:
ta = np.array(a).T.tolist() # transpose the array;
col_means = list(map(lambda x: np.nanmean(x), ta)) # get means;
print("column means:", col_means)
# REPLACE NAN ENTRIES WITH COLUMN MEANS:
nrows = len(a); ncols = len(a[0]) # get number of rows & columns;
for r in range(nrows):
for c in range(ncols):
if np.isnan(a[r][c]):
a[r][c] = col_means[c]
print("------- means added -----")
for aa in a:
print(aa)
Ausgabe:
------- original array -----
[0.93230948, nan, 0.47773439, 0.76998063]
[0.94460779, 0.87882456, 0.79615838, 0.56282885]
[0.94272934, 0.48615268, 0.06196785, nan]
[0.64940216, 0.74414127, nan, nan]
[0.64940216, 0.74414127, nan, nan]
column means: [0.82369018599999999, 0.71331494500000003, 0.44528687333333333, 0.66640474000000005]
------- means added -----
[0.93230948, 0.71331494500000003, 0.47773439, 0.76998063]
[0.94460779, 0.87882456, 0.79615838, 0.56282885]
[0.94272934, 0.48615268, 0.06196785, 0.66640474000000005]
[0.64940216, 0.74414127, 0.44528687333333333, 0.66640474000000005]
[0.64940216, 0.74414127, 0.44528687333333333, 0.66640474000000005]
Die for-Schleifen können auch mit Listenverständnis geschrieben werden:
new_a = [[col_means[c] if np.isnan(a[r][c]) else a[r][c]
for c in range(ncols) ]
for r in range(nrows) ]